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Abstract. We propose CLP(QS), a declarative spatial reasoning frame-
work capable of representing and reasoning about high-level, qualitative
spatial knowledge about the world. We systematically formalize and
implement the semantics of a range of qualitative spatial calculi using a
system of non-linear polynomial equations in the context of a classical
constraint logic programming framework. Whereas CLP(QS) is a general
framework, we demonstrate its applicability for the domain of Computer
Aided Architecture Design. With CLP(QS) serving as a prototype, we
position declarative spatial reasoning as a general paradigm open to other
formalizations, reinterpretations, and extensions. We argue that the ac-
cessibility of qualitative spatial representation and reasoning mechanisms
via the medium of high-level, logic-based formalizations is crucial for their
utility toward solving real-world problems.
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ming, declarative programming, spatial computing, architecture design

1 Introduction

Declarative programming is a paradigm concerned with the development of
computational models that can solve problems directly from high-level domain
specifications consisting of the core logic of computation, without a complete
specification of the precise flow of control [37]. It is a model of computation
aiming to solve a problem by specifying its ‘what ’, as opposed to its ‘how ’. As an
example, consider the definition of a square root: {

√
x = y, { y ≥ 0, y2 = x}}.

This definition of a square root does not say anything about the actual computation
of square roots; it is a declarative specification of the concept of a square root

constituting a rather extreme form of declarativeness: the holy grail of research
in declarative programming. Within computer science, or specifically Artificial
Intelligence (AI), several declarative computation paradigms, programming lan-
guages, and frameworks exist, primarily among them based on the theoretical
foundations of Logic Programming (LP) [17, 33], Constraint Logic Programming

(CLP) [29] and derivatives such as Abductive Constraint Logic Programming (ACLP)

[31], Answer-Set Programming (ASP) [36], and Functional Programming [1]. Knowl-
edge Representation and Reasoning (KR) research in AI is concerned with the
development of formalisms and systems that can deal with high-level knowledge,



ranging from the abstract mathematical, to the ontological, spatial, temporal, ac-
tion and change driven etc [2, 50]. The main focus of this paper is the integration
of one such specialization in the field of Artificial Intelligence, i.e., qualitative
spatial representation and reasoning [14], with a declarative approach to problem
solving, i.e., constraint logic programming.

. Qualitative Spatial Representation and Reasoning Qualitative Spa-
tial Representation and Reasoning (QSR) provides a commonsensical interface
to abstract and reason about spatial information. Formal methods in the field of
QSR consist of qualitative spatial calculi, which are relational-algebraic systems
pertaining to one or more aspects of space such as topology, orientation, direc-
tion, size [14].1 The basic tenets in QSR consist of constraint-based reasoning
algorithms over an infinite (spatial) domain to solve consistency problems in the
context of qualitative spatial calculi. The key idea here is to partition an infinite
quantity space into finite disjoint categories, and utilize the special relational
properties of such a partitioned space for reasoning purposes.
The application of QSR mechanisms is a topic that is gaining significant mo-
mentum in the community [10]. One objective, from the viewpoint of these
application goals, is the use of qualitative spatial abstraction and reasoning
mechanisms that have been developed in QSR in domains involving representing
and reasoning with static and dynamic spatial information., e.g., spatial design,
geographic information systems, cognitive robotics etc. From a methodological
viewpoint, the integration of formal qualitative spatial and temporal techniques
within general commonsense reasoning frameworks in KR is a crucial next-step
for their applicability in real-world domains [6].

In this paper, we are concerned with representing and reasoning with qualitative
abstractions of spatial information within a declarative programming framework.
A declarative programming interface to qualitative spatial representation and
reasoning techniques serves as a natural way for systems and programmers to
seamlessly access specialized spatial reasoning capabilities toward the development
of intelligent spatial systems. With this hypothesis, we propose a Declarative
Spatial Reasoning framework and demonstrate its applicability for real-world
problem solving.

. Declarative Spatial Reasoning. We propose declarative spatial reasoning
as a general paradigm for the integration of specialized qualitative spatial repre-
sentation and reasoning techniques with declarative programming languages and
frameworks such that qualitative spatial, and geometric reasoning capabilities
may be directly exploited within state-of-the-art declarative knowledge represen-
tation and reasoning frameworks in Artificial Intelligence. A crucial motivation
is to be able to declaratively specify and solve real-world problems related to
spatial representation and reasoning. From the viewpoint of the main proposal
presented in this paper:

1 The mereotopological RCC calculus, which was first proposed within a first-order
logical framework, is an exception.



Declarative spatial reasoning denotes the ability of declarative programming

frameworks to handle spatial objects and the spatial relationships amongst them

as native entities, e.g., as is possible with concrete domains of Integers, Reals

and Inequality relationships. The objective is to enable points, oriented points,

directed line-segments, regions, and topological and orientation relationships

amongst them as first-class entities within declarative frameworks in AI.

The principal advantage of this mode of computation is that high-level specifica-
tions and constraints about the spatial domain of interest may be expressed in
a manner that is similar or close to their conceptualization and modeling, e.g.,
as high-level clauses (i.e., facts, rules), of the declarative semantics of a logic
program. Although this paper is categorically focused on spatial abstractions
defined in QSR, our general approach lends itself to re-interpretations and exten-
sions with other perspectives such as Visual and Diagrammatic Representations,
as well as other cognitively-driven modalities or mental models of space.

Basic Approach and Contribution

Spatial representation and reasoning problems may be approached in a multitude
of representational forms, ranging from qualitative, visual, diagrammatic, purely
geometric etc. The underlying thread in any approach is that the spatial domain
is special, and similar to other specialized sub-disciplines in AI (e.g., ontological,
action and change driven), the development of an intelligent spatial representation
and reasoning capability, regardless of its methodological underpinnings, requires
its own set of specialized techniques and algorithms. Keeping in mind such
specializations, the fundamental question that arises is:

By what means may specialized qualitative spatial representation and reasoning

techniques be integrated within general knowledge representation and reasoning

techniques in Artificial Intelligence?

This question is rather open-ended, and acquires several different interpretations
depending on the precise KR technique, and aspects of space, actions, events, and
change being considered [6]. In this paper, we focus on one concrete interpretation:

How may specialized qualitative spatial representation and reasoning techniques

be embedded within the state-of-the-art declarative programming approach of

CLP?

An embedding of this nature (i.e., with methods such as CLP) would imply
that spatial representation and reasoning problems may be directly modeled
within state-of-the-art KR techniques, and thus be directly usable by the direct
benefactors of AI tools and frameworks, in this case, users of CLP. This particular
interpretation, and its prototypical implementation in this paper, is guided by
the hypothesis that:

The accessibility of generic qualitative spatial abstraction and reasoning tech-

niques, e.g., qualitative spatial calculi, qualification and consistency algorithms,



via the interface of declarative programming frameworks such as constraint logic

programming is crucial, and presents one model for their applicability toward

real-world problem solving.

This paper illustrates its key propositions by developing the declarative spatial
reasoning framework CLP(QS), which is an integration of a polynomial-based
CLP framework with a qualitative spatial domain QS consisting of point and
region based spatial calculi. To achieve the integration, we characterize the spatial
domain QS using a system of non-linear polynomial equations in a manner that
is consistent with the chosen CLP framework. The applicability of CLP(QS) is
demonstrated by way of qualitatively abstracted geometric reasoning problems
from the domain of Computer-Aided Architecture Design (CAAD). Since our
focus is on real-world problem solving, all exemplified data-sets, i.e., the CAAD
models, are sourced and generated from professional design tools, and they
conform to industry scales and standards.

Organization. The paper is organized as follows: Section 2 provides an overview
of declarative spatial reasoning and application-guided motivations thereof. Sec-
tion 3 presents CLP(QS): included are the qualitative spatial domain QS con-
sisting of positional and topological spatial calculi, a polynomial characterization
for QS, and its implementation, and (methodological and empirical) evaluation.
Section 4 demonstrates the application potential for CLP(QS) for real-world
problem solving in the domain of computer-aided architecture design. In Section
5, we discuss the relationship of our work and contributions with respect to
existing research. In Section 6 we conclude and provide research perspectives.

2 What is Declarative Spatial Reasoning?

Declarative spatial reasoning, in so far as its broad conception as a paradigm is
concerned, is intuitively best understood with respect to the kinds of computa-
tional (and by implication, representational) challenges that it aims to address.
The kinds of fundamental reasoning tasks that may be identified within the
purview of declarative spatial reasoning span a wide spectrum, e.g., including
reasoning patterns such as spatial property projection, spatial simulation, spa-
tial planning (e.g., for configuration problems), hypothetical reasoning (e.g., for
abductive explanation) with spatial information to name a few. Both within
and beyond the range of domains identified in this paper, these are reasoning
problems that involve an inherent interaction between space, actions, events, and
spatial change in the backdrop of domain-specific knowledge and commonsense
knowledge about the world [6]. For this paper, we restrict ourselves to the domain
of space alone.

2.1 Need for a Declarative Interface

One of the principal reasons behind the success of declarative (logic and constraint
logic) programming frameworks has been their ability to provide a range, and
combination thereof, of constraint and logic-based reasoning abilities in the



context of a high-level first-order language that may be used to directly encode
a domain of interest.2 For instance, consider the following fragment of Prolog
code that recursively computes the transitive closure of a relationship R (e.g.,
one may imagine this to be a traversal problem):

t closure R(X, Y) :- R(X, Y).

t closure R(X, Y) :- R(X, Z), t closure R(Z, Y).

Here, the search for the transitive closure t closure R, and term unification
(based on syntactic equality) for the variables involved (i.e., X, Y, Z) is built into
a logic programming language such as Prolog. The precise semantics of the terms
being unified does not acquire any special significance since equality is the only
relation that is available for term unification. Constraint logic based extensions
make it possible to utilize inequalities and the existence of inequality constraints
over Integers, Reals etc. For instance, now consider a rather specialized fragment
that computes the set of points that are inside of a 3D solid object (e.g., a sphere).
This could be imagined to be a reasoning task in the context of Constructive
Solid Geometry (CSG) [27], with the following fragment requiring a constraint
solver for quadratic and linear constraints:

entity(ball, sphere(center(1,1,1), radius(5)).

inSphere(point(X, Y, Z), sphere(center(Cx, Cy, Cz), radius(R))) :-

(X - Cx)*(X - Cx)+(Y - Cy)*(Y - Cy)+(Z - Cz)*(Z - Cz) <= R*R, R>=0.

What we are aiming at is the general ability to declaratively refer to high-
level statements about real and hypothetical spatial worlds, without the need
to specify problems with the level of formalization in the above. Declarative
programming frameworks such as CLP are indeed not pre-equipped to deal with
spatial reasoning, or general spatial computation capabilities. For instance, a
CLP engine cannot understand the semantics of space, and spatial relations
such as inside, front-of, or in general, the semantics of relational spatial systems
constituted by formal qualitative spatial calculi. By analogy, this is similar to
the case where a general logic programming language such as Prolog is not
intended to understand the meaning of the predicate ‘likes’ in the statement
‘likes(john, films)’, or complex taxonomic structures formalized therefrom without
giving an explicit formalization of the descriptive semantics; such specialized
ontological reasoning would instead fall within the purview of Description Logic
reasoners. Consider the domain of spatial computing for design [8]: automated
computer-assisted architecture design (CAAD) systems require the capability to
solve structural and functional design requirement consistency problems. Such
problems are expressible as spatial constraints —topological, orientational, size—
among the domain entities (i.e., regions, line-segments and points) that constitute
a CAAD model. The following scenario constitutes a design requirement:
2 This is applicable to other declarative frameworks such as functional programming.

However, this paper will specifically deal with logic and constraint-logic based
programming approaches.



Security / Privacy. A typical design requirement may entail that certain parts

of the environment may or may not be visible or readily accessible. For instance, it

may be desired that the WashRoom is as isolated as possible from other work-areas,

or that the main entrance area be within the reach of sensing apparatuses such as

an in-house Camera.

This constraint may, for instance, be directly encoded at a higher-level of ab-
straction within a rule-based programming mode3; in the following example the
operational space denotes the region of space that an object requires to perform
its intrinsic function, and the range space denotes the region of space that lies
within the scope of a sensory device [9]:

secure by(Door, Sensor) :-
physical geometry(Door, PGeom),

operational space(PGeom, OpSpace),

range space(Sensor, RgSpace),

topology(OpSpace, RgSpace, inside).

The ability to declaratively handle spatial entities, and the topological and
orientation relationships amongst them is only part of the story; in Section 2.2,
which is to follow, we present a general class of application requirements.

2.2 Key Application Requirements

Application domains that involve spatial information processing typically require
the following fundamental capabilities:

. domain constraints. express (spatial) constraints between domain entities
by way of high-level rules, e.g., of the kind typically expressible within a logic
programming framework

. consistency. check for (in)consistency of the rules, involving checking for
spatial consistency, by considering the special properties that a domain such as
space merits. For instance, this involves using the specialized spatial representation
and reasoning mechanisms developed within the QSR community

. hypothetical reasoning. perform hypothetical reasoning at the qualitative
spatial level, involving reasoning about what could be, on the basis of what is. Here,
the key requirement is to use the special properties of the spatial relationship space
and commonsense knowledge about space to derive those spatial configurations
that are physically realizable. In a dynamic context, which is not addressed in this
paper, this also translates to the task of scenario and narrative completion, e.g.,
by spatio-temporal abduction. In conjunction with quantification (see below), this
may be used to support a recommendation function in a spatial design context
[8].

. quantification. to compute quantifications that provide a metric grounding
for the hypothesized spatial scenarios. This capability could, for instance, serve

3 The scenario is further built-up and illustrated in Fig. 4; Section 4.



as the low-level computational foundation for high-level reasoners capable of
abductive reasoning with spatial scenarios, and narratives of spatio-temporal
information [7].

In principle, by broadening the interpretation of spatial reasoning, many more
specialized spatial reasoning and computing requirements may be identified,
e.g., spatio-temporal projection, simulation, planning, abductive explanation,
inductive generalization, spatial similarity and matching, spatial data merging
and integration [6]. Regardless, it is imperative that such facilities have to be
provided in a domain neutral manner.

3 CLP(QS): A Declarative Spatial Reasoning Framework

Constraint Logic Programming (CLP) is a form of constraint programming in which

logic programming is extended to include concepts from constraint satisfaction [29].

The CLP framework combines methods in Constraint Programming (CP) with Logic

Programming (LP) techniques, thereby providing for a seamless integration of logical

methods with algebraic techniques. A constraint logic program is essentially a logic

program containing constraints (e.g., over the domain R) in the body of clauses. The

difference is that, whereas within a LP problem solving is reduced to syntactic unification

and theorem-proving, within CLP the task is to interpret term unification as more

than equality by regarding it as a constraint system. Several CLP solvers exist: CLP(R)

[30] and Prolog(III) for solving constraints over real numbers, the RISC-CLP(Real)

for non-linear real constraints [28], CLP(RL) [46] for first-order formulas over various

numeric domains, Abductive CLP [31] and so on.4

3.1 The Qualitative Spatial Domain QS

Qualitative spatial calculi can be classified into two groups: topological and posi-
tional calculi. With topological calculi such as the Region Connection Calculus
(RCC) [40] and the 9-Intersection Model [22], the primitive entities are spatially
extended regions of space, and in the case of the mereotopological RCC system,
could possibly even be 4D spatio-temporal histories, e.g., for motion-pattern
analysis. Alternately, within a dynamic domain involving translational motion,
point-based abstractions with orientation calculi suffice. Fig 2(a) is a 2D illustra-
tion of the RCC-8 relations. Other spatial calculi include the LR calculus [45],
the Oriented-Point Relation Algebra (OPRAm) [39], the Double-Cross Calculus
[24], and the line-segment based Dipole Calculus [43].

In this paper, we focus on two-dimensional point-based spatial calculi for repre-
senting intrinsically and extrinsically referenced orientation information. Spatial
calculi such as the Oriented-Point Relation Algebra (OPRAm), the LR calcu-
lus, ST AR calculus, Dipole calculus (DP), Double Cross Calculus (DCC) are
applicable in this context.

4 As further described in Section 3.2, a solver in the class of RISC-CLP(Real) is relevant
from the viewpoint of this paper.



(a) (b)

Fig. 1: Illustrations of LR relation p1 p2 r p3 and OPRA2 relation p1 2∠2
7 p2

The spatial domain QS consists of: LR, OPRAm, ST AR, DP, DCC, and
topological calculi such RCC and the 9-Intersection model restricted to a specific
class of 2D polygonal regions.5 Our formalization of the qualitative spatial domain
QS relies on the support for non-linear real constraints within CLP [28].

3.2 A CLP Based Polynomial Characterization for QS

The decidability of the problem of solving first-order polynomial constraints over
reals (also known as the Quantifier Elimination (QE) problem) was found by
Tarski [47]. After the seminal contribution by Collins [15], QE over reals has been
extensively investigated, where the main focus was to cope with the intrinsic
doubly exponential complexity of the problem [18]. There are several approaches
to this problem, the cylindrical algebraic decomposition algorithm by Collins
[15, 16] being the most prominent approach ([38] provides a concise overview on
this topic).
In what follows we present qualitative spatial relations from LR, OPRAm as
polynomial constraints over reals, of which the decision problem is in PSPACE
[11] in the number of objects, and RCC as first-order constraints over the LR
calculus, of which the worst case complexity for the decision problem is known
to be doubly exponential [18]. Thereby, we are not only able to decide the
problem, but we are also capable of providing a model of the solution by means
of quantification.

Throughout the following descriptions all points are two-dimensional points from
the Euclidian plane.

LR calculus The domain of the LR calculus [45] is the set of all points in the Eu-
clidian plane. A LR relation describes for three points p1 =(x1, y1), p2 =(x2, y2),
p3 =(x3, y3) the direction of p3 with respect to p1, where the orientation of p1 is de-
termined by p2. There are altogether nine LR relations; seven relations for points
are depicted in Fig 1(a) : left, right, front, start, inbetween, end, back. In Fig 1(a)
the Euclidian plane is partitioned by points p1 and p2, p1 6= p2 into seven regions:

5 In a number of application domains (e.g., architecture, construction IT, urban
planning), the input data for describing regions can be adequately represented by
polygons.



two half-planes (l, r), two half-lines (f , b), two points (s, e), and a line segment (i).
These regions determine the relation of the third point to p1 and p2. The remain-
ing two relations are: double :=

{
(p1, p2, p3)

∣∣ p1, p2, p3 ∈ R2, p1 = p2, p1 6= p3

}
,

triple :=
{

(p1, p2, p3)
∣∣ p1, p2, p3 ∈ R2, p1 = p2 = p3

}
. By describing the relations

using polynomial constraints, we obtain the correspondences (1)–(12), where
we introduce a new point p4 for the equivalences (9), (6) and (3), if there is no
point p4, such that p1 p2 r p4. The polynomial constraints in (1) and (2) come
from the determinant of the matrix

(
1 x1 y1
1 x2 y2
1 x3 y3

)
, whose sign determines the relative

position of points p1, p2, p3, where −, 0, + mean clockwise orientation, collinear,
counterclockwise orientation, respectively.

p1 p2 l p3 ≡def x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 > 0 (1)

p1 p2 r p3 ≡def x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 < 0 (2)

p1 p2 b p3 ≡def x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0 (3)

∧ p1 p2 r p4 ∧ p4 p1 l p3 (4)

p1 p2 s p3 ≡def x3 = x1 ∧ y3 = y1 ∧ x3 6= x2 ∧ y3 6= y2 (5)

p1 p2 i p3 ≡def x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0 (6)

∧ p1 p2 r p4 ∧ p4 p1 r p3 ∧ p4 p2 l p3 (7)

p1 p2 e p3 ≡def x3 = x2 ∧ y3 = y2 ∧ x3 6= x1 ∧ y3 6= y1 (8)

p1 p2 f p3 ≡def x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0 (9)

∧ p1 p2 r p4 ∧ p4 p2 r p3 (10)

p1 p2 d p3 ≡def x1 = x2 ∧ y1 = y2 ∧ x1 6= x3 ∧ y1 6= y3 (11)

p1 p2 t p3 ≡def x1 = x2 = x3 ∧ y1 = y2 = y3, (12)

OPRAm calculus The domain of the OPRAm calculus is the set of all
oriented points. An oriented point p is a quadruple (x, y, v, w), x, y, v, w ∈ R,
where (x, y) is the location of p, and (v, w) defines the orientation of p by means
of the orientation vector op := (v, w) − (x, y). Two orientated points p1 and
p2 are equal if their positions and orientations are equal. With m lines passing
through p, we can partition the whole plane (without the point itself) equally
into 2m open sectors and 2m half-lines, where exactly one distinguished half-line
has the same orientation as op. Starting with the distinguished half-line, and
going through the sectors and half-lines alternately in the counterclockwise order,
we can assign numbers 0 to 4m− 1 to the open sectors and half-lines (See Fig
1(b)). An OPRAm relation is a binary relation which describes for points p1

and p2 their positions relative to each other with respect to the aforementioned
partitioning. This is represented by p1 m∠j

i p2, where m is as defined before, i
is the number of the sector (or half-line) of p1, in which p2 is located, and j is
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the number of the sector (or half-line) of p2, in which p1 is located.6 Then for
p1 = (x1, y1, v1, w1), p2 = (x2, y2, v2, w2), and the rotation map(

rx(v, w, θ)
ry(v, w, θ)

)
:=

(
cos θ − sin θ
sin θ cos θ

) (
v
w

)
we can define for i = 0, 2, . . . ,m− 4, m− 2:

p1 m∠∗
i p2 ≡def det

„
1 x1 y1
1 rx(v1,w1,i π

m ) ry(v1,w1,i π
m )

1 x2 y2

«
= 0

∧ det

„
1 x1 y1
1 rx(v1,w1,(i+m

2 ) π
m ) ry(v1,w1,(i+m

2 ) π
m )

1 x2 y2

«
< 0,

which describe that p2 is in half-line i of p1, and for i = 1, 3, . . . ,m− 3,m− 1:

p1 m∠∗
i p2 ≡def det

„
1 x1 y1
1 rx(v1,w1,(i−1) π

m ) ry(v1,w1,(i−1) π
m )

1 x2 y2

«
> 0

∧ det

„
1 x1 y1
1 rx(v1,w1,(i+1) π

m ) ry(v1,w1,(i+1) π
m )

1 x2 y2

«
< 0,

which describe that p2 is in sector i of p1. Then

p1 m∠j
i p2 ≡ p1 m∠∗

i p2 ∧ p2 m∠∗
j p1,

and we obtain the desired polynomial constraints.

Other point-based calculi Other point-based calculi like the ST AR calculus,
dipole calculus, single-cross, and double-cross calculus can be modeled in a similar
way as described previously. Indeed, all of the point-based calculi mentioned in
this paper except for ST AR can be reduced to OPRAm [21], which has been
formally characterized in this paper.

6 The original paper [39] also introduces the so-called same relations for two coinciding
oriented points, which are differentiated by their orientations. Since these cases are
primarily relevant for relation-algebraic reasoning, they are omitted in this paper.



p ∈ R◦ ∀i (pi pi+1 l p)

p ∈ ∂R ∃i (pi pi+1 s p ∨ pi pi+1 i p ∨ pi pi+1 e p)

p ∈ RC ∃i : pi pi+1 r p

p ∈ R p ∈ R◦ or p ∈ ∂R

p ∈ R ∩ S p ∈ R and p ∈ S

p ∈ R ∪ S p ∈ R or p ∈ S

p ∈ R\S p ∈ R ∩ SC

Table 1: The correspondence table

R dc S ∀p
“

p ∈ S ⇒ p ∈ RC
”

R ec S ∃p (p ∈ ∂R ∩ ∂S) ∧ ∀p
“

p ∈ R ⇒ p ∈ ∂S ∪ SC
”

R po S ∃p, p′, p′′
`
p ∈ R ∩ S ∧ p′ ∈ R\S ∧ p′′ ∈ S\R

´
R tpp S ∃p (p ∈ ∂R ∩ ∂S) ∧ ∀p (p ∈ R ⇒ p ∈ S)

R tppi S ∃p (p ∈ ∂R ∩ ∂S) ∧ ∀p (p ∈ S ⇒ p ∈ R)

R ntpp S ∀p (p ∈ R ⇒ p ∈ S◦)

R ntppi S ∀p (p ∈ S ⇒ p ∈ R◦)

R eq S ∀p (p ∈ R ⇔ p ∈ S)

Table 2: The correspondence table for complex regions R and S

Topological calculi We model topological relations (Fig. 2(a)) [22, 40] between
regions of a restricted class, namely, polygons that can consist of disconnect
pieces and can contain holes.
Firstly, we define a region R as a simple polygon given by a sequence of 2D
points, i.e., R := (p1, p2, . . . , pm), m ≥ 3. Region R is convex, i.e., pi pi+1 l pi+2,
for all i = 1, 2, . . . ,m − 1, where we set pm+1 := p1 (See Fig 2(b)). With this
setting we can decide the relative position of a point q with respect to a convex
region R (i.e., whether the point is inside, in the interior, in the boundary, or
outside of R) by using the constraints from the LR calculus. Table 1 shows the
correspondences.
As any simple polygon can be partitioned into convex polygons in polynomial-
time [12], and is therefore a disjunction of convex polygons, our definitions are
naturally extended to concave polygons.
On the basis of this information we can further decide the RCC relations between
regions R and S. This is shown in Table 2. Our encoding of the semantics of
topological relations, and the restricted class of regions that we admit, suffices
for a characterization of topological relations for both the 9-Intersection Model
[22] as well as the mereotopological Region Connection Calculus [40].

3.3 Relational Algebraic and Polynomial Characterizations

The algebraic-closure method, which utilizes the relational algebraic structure of
qualitative calculi, provides a sound and complete algorithm for calculi like Allen’s
Interval Algebra or RCC8. However, the method is not sound for point-based 2D
calculi, including LR or OPRAm as shown in [25, 52], on which our applications



(a) Algebraic closure cannot detect the

OPRA2 inconsistency that b,c,d must

be colinear, a,c,d must be colinear, but

a,b,c,d must not be colinear.

(b) To be consistent with the CA con-

straints, d must also overlap a while be-

ing disjoint from b. Algebraic closure can-

not detect that this is impossible on a 1D

acyclic domain of intervals.

Fig. 3

are based. By contrast, the quantifier elimination problem as addressed at the
beginning of Section 3.2 is decidable and has effective decision methods like
the cylindrical decomposition algorithm [15]. In what follows, we address the
weaknesses of the relation algebraic approach. These weaknesses call for the
quantifier elimination approach underlying our formulation of QS.
. Failing on atomic networks. For calculi that are not closed under con-
straints [41], algebraic closure is not able to determine the consistency of atomic
networks. For example, using OPRAm [25] let a,b be distinct oriented points
directly facing points c,d. We make this inconsistent by placing a,b to the left-rear
of c, and d to the front-right of c (see Figure 3(a)),7

opra2(a,b,1,7), opra2(c,d,7,3),
opra2(a,c,0,3), opra2(a,d,0,3),
opra2(b,c,0,3), opra2(b,d,0,3).

Algebraic closure cannot detect this inconsistency. Other examples include LR
[52] and INDU [4].
. Failing on interpretations. Changing the domain of interpretation in a
seemingly trivial manner can dramatically change the effectiveness of algebraic
closure. Moreover, an interpretation that is suited to one calculus can be precisely
the interpretation that causes algebraic closure to fail in another calculus, making
it tricky to freely mix and swap calculi. An example is the containment algebra
(CA) [35].8 Algebraic closure cannot infer that a CA cycle of at least four intervals
requires at least two spatial dimensions or a cyclic domain (see Figure 3(b)),
7 The predicate opram(p1,p2,i,j) represents the OPRAm relation p1 m∠j

i p2.
8 In CA, algebraic closure cannot decide consistency when interpreted in the domain

of linearly ordered intervals [35]. For example, this could be 1D axis-aligned blocks
motivated by the block-algebra for p = 1, or spatial intervals along an acyclic path
motivated by Allen’s interval algebra. The trap for developers is that it can decide
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Fig. 4: Work-in-progress floorplan of an office (range space is illustration only)

partialOverlap(a,b), partialOverlap(b,c),
partialOverlap(c,d), partialOverlap(d,a),
disjoint(a,c), disjoint(b,d).

3.4 CLP(QS): Implementation Overview

In order to test the basic principles of CLP(QS), we have implemented a prototype
through a loose integration (in C++) between SWI-Prolog [51] for high-level
reasoning and REDUCE [26] for solving polynomial equations. The REDLOG
package [19] of the computer algebra system REDUCE allows quantifier elimi-
nation over Reals. Prolog manages the control of query-answering by building
REDLOG expressions for LR relations as described in Section 3.2 using special-
ized predicates such as i LR(P1,P2,P3).

Although optimization and benchmarking are not the aims of this paper, it
must be noted that the complexity of general polynomial systems is doubly-
exponential [18].9 As future outlook of this aspect of the work, we are interested
in applying constraint optimizations, investigating more computationally efficient
relation encodings, and developing a dedicated solver for QS consistency and
quantification problems (Section 6).

4 CLP(QS): An Application in Architecture Design

In this section we describe the role of CLP(QS) in the domain of Computer
Aided Architectural Design (CAAD). During the process of designing a building,
architects routinely analyze an enormous amount of detailed information in order
to determine whether certain requirements have been met. These can range
from meeting strictly objective safety codes, to eliciting subjective, emotional
responses, and typically employ geometric and high-level spatial features. Imagine
that an architect is designing the floorplan of an office. Figure 4 illustrates a
work-in-progress design. We will now demonstrate how CLP(QS) can be used for
checking the consistency of high-level constraints and for quantification.

consistency of atomic networks for less structured domains (i.e. RCC-5 [42]) such as
closed disks [20] and the block-algebra for p > 1.

9 Most poor run-times have been experienced with our sample data for topological
queries where a number of polygon vertices are ungrounded.



(a) Wash Sink and Door (b) Doors (c) Incorrect Sensor Position

(d) Sensor Repositioning

Fig. 5: Design (In)Consistency

4.1 Consistency

The structural form corresponding to high-level design constraints (e.g., coming
from design guidelines, designer expertise, client requirements) may be conceived
and directly translated into a high-level declarative specification. Some examples
follow:

. Safety. Doors should not open onto areas where a person might be located
while occupied with some activity. Formally, the operational space of doors should
not overlap with the functional space of activity objects such as the washbasin,

safety(Door, Object) :-
operational space(Door, Op),

functional space(Object, Fs),

not(topology(Op, Fs, overlaps)).

CLP(QS) detects that the current design does not meet this constraint for the
washbasin (see Figure 5(a)). The architect changes the opening direction of the
door which causes a new problem as detected by CLP(QS) (see Figure 5(b)),

noCollidingDoors(Door1, Door2) :-
operational space(Door1, Op1),

operational space(Door2, Op2),

not(topology(Op1, Op2, overlaps)).

The architect resolves the problem by sliding the door down the wall (see
Figure 5(c)).
. Security. The architect must position a camera so that people entering the
office can be identified. This is formalized using the range space of the camera
and the operational space of the entrance door,



secure by(Door, Camera) :-
physical geometry(Door, G),

operational space(G, O),

range space(Camera, R),

topology(O, R, inside).

CLP(QS) confirms that the design currently satisfies this constraint by translating
it into the equivalent LR constraint 10

ntpp(O,R) ≡ ∀p · inside(p,O) → interior(p,R)

≡ ∀p ( ¬∃ i · r(pO
i ,p

O
i+1,p) → ∀j · l(pR

j ,p
R
j+1,p) ) .

. Privacy. Security cameras must not be able to record inside the adjoining
bathroom. That is, cameras must be directed away from the bathroom,

privacy(Bathroom, Camera) :-
oriented point(Camera, C),

physical geometry(Bathroom, G),

not orientation(C, G, facing).

Facing can be interpreted as the constraint:

facing(C,G) ≡ ∃p ( inside(p,G), ∃i ∈ {15, 0, 1} opra4(C,p,i,*)).

On the privacy constraint, CLP(QS) detects that the current design is inadequate.
The architect attempts to solve the problem by rotating the camera to face away
from the bathroom, however, CLP(QS) detects that this causes the security
constraint to fail.

4.2 Quantification

We will now get CLP(QS) to suggest a location and orientation of the camera
that satisfies the security and privacy constraints. To do this we will specify the
location and orientation of the camera as an ungrounded variable, and further
constrain its domain of acceptable configurations.
. Position. The camera must be mounted on one of the perimeter walls of the
office,

onPerimeter(Camera, Office) :-
∃W ( isWall(w), in(W, Office),

physical geometry(W, R),

oriented point(Camera, P),

topology(P, R, boundary)).

10 For clarity we have assumed in the example that the regions are convex and do not
have holes. As we described in Section 3.2, regions with holes can also be handled.



This is equivalent to the LR constraint

∃j ( s(w
j
1,w

j
2,p) or i(w

j
1,w

j
2,p) or e(w

j
1,w

j
2,p)) .

where a wall Wj is the line segment (wj
1, w

j
2).

. Visibility. A region R is visible from an observation point p (in a room with
objects Objs) if there is at least one unobstructed line between the observer and
some point within the region,

visible(R,p,Objs) :-

∃p2 ( ∀S ∈ Objs/{R} (
inside(p2,R),

not( lineIntersect(p,p2,S)) )).

If region R is a sequence of points, then the predicate for determining whether a
line intersects a region is

lineIntersect(p1,p2,R) :-

∃i (pi,pi+1 ∈ R, lineIntersect(p1,p2,pi,pi+1)).

where line intersection is defined using LR relations,

lineIntersect(a1,a2,b1,b2) :-

∃p ( (i(a1,a2,p) or s(a1,a2,p) or f(a1,a2,p) )
and (i(b1,b2,p) or s(b1,b2,p) or f(b1,b2,p) )).

CLP(QS) suggests the location and orientation illustrated in Figure 5(d).

5 Discussion and Related Work

Researchers have investigated high-level modeling and reasoning with spatial
knowledge; most direct connections of our work emerge with the works by
Almendros-Jiménez [3], Banerjee and Chandrasekaran [5], Bhatt et al. [9], Escrig
and Toledo [23], Kurup and Cassimatis [34], Uribe et al. [49]. Related work also
exists in the constraint databases community, although there exist fundamental
differences between constraint query languages and CLP [13, 32]. Focussing
on the knowledge representation approach, we differentiate our approach and
contributions with respect to three main aspects:

1. Use of qualitative spatial calculi, as construed within QSR, whilst preserving
their relational semantics (and therefore, where applicable, their cognitive
and psycholinguistic underpinnings). This is crucial in domains such as design
where constraints are tightly connected to their high-level conceptualization.

2. Providing an underlying polynomial characterization for a range of topological
and positional spatial calculi, thereby:
(a) overcoming several limitations, in a relational algebraic sense, of conven-

tional compositional reasoning with precomputed composition tables



(b) providing inherent support for quantification of relational spatial infor-
mation

3. Enabling spatial entities and qualitative relations as first-class, native objects
within the declarative framework of classical constraint logic programming
systems, and providing a prototypical implementation and demonstration of
its application for real-world problem solving.

The declarative approach adopted by Bhatt et al. [9] uses a description logic based
reasoning technique for ensuring spatio-terminological consistency. In this work,
only topological consistency may be checked for using a terminological system, and
it is not possible to solve constraints, quantify, or specify positional constraints.
The work by Uribe et al. [49] aims to construct a module that can provide
spatial reasoning services in the context of a larger system that is not necessarily
restricted to spatial knowledge. Their view of spatial knowledge is grounded in
QSR, and: (a) aims at providing question-answering support within a first-order
theorem prover, (b) solely relies on spatial reasoning by incorporating composition
tables within (the prover). This is different from our approach in two major
respects: (1) we utilize constraint logic programming, where problem-solving
is based on constraint solving foundations, as opposed to a theorem-proving
approach; and (2) our polynomial characterization of the spatial domain QS
does not utilize compositional reasoning thereby overcoming the limitations of
reasoning with composition tables (as elaborated on in Section 3.3). The work
by Escrig and Toledo [23] may also be situated in this category, since here too
spatial reasoning (with positional calculi) is performed using composition tables.
It is worth noting here that spatial representation is performed using encoding
composition tables using constraint handling rules11 framework. Almendros-
Jiménez [3] approach the problem of constraint solving over sets of spatial objects
by considering spatial constraints as an instance of CLP. Notwithstanding the
fact that Almendros-Jiménez neither addresses QSR methods, nor utilizes any
form of linear or non-linear formalization, there exist interesting potentials when
considering the synergy afforded by the contributions of [3] and this paper: their
in-depth study on the operational semantics of the CLP solver, i.e., the interaction
of the spatial constraint solver with the underlying resolution mechanism in CLP,
whilst considering constraints over sets of spatial objects, provides useful insights
for a future extensions of our prototypical CLP(QS) framework in a manner such
that it may be tightly integrated within state-of-the-art CLP engines (e.g., as a
specialized spatial reasoning library for Eclipse).
Banerjee and Chandrasekaran [5] deal with a range of spatial perception and
action problems from a diagrammatic reasoning perspective. Whereas they employ
similar underlying methods (namely, quantified constraint satisfaction) for solving
spatial problems, their approach does not seek a direct integration with CLP
or other declarative programming approaches. Furthermore, the equivalent of
11 Constraint Handling Rules (CHR) are a special purpose language designed to write

and combine constraint systems [44]. CHR have been used to encode a range of
constraint handlers (solvers), including domains such as terminological and temporal
reasoning.



the spatial domain QS in their work consists of a diagrammatic representation,
where in our case, QS is founded on qualitative spatial calculi in QSR. As
emphasised in this paper, our perspectives on the spatial domain QS within
declarative spatial reasoning are subject to reinterpretations and extensions: from
our perspective, we see interesting synergies and possibilities to compare different
formalizations for QS possibly encompassing visual and diagrammatic models of
space. Methodologically similar to the work of Banerjee and Chandrasekaran [5]
in its use of a diagrammatic representations is the work by Kurup and Cassimatis
[34]. Within a propositional logic framework, Kurup and Cassimatis [34] approach
the spatial reasoning problem by integrating a diagrammatic representation with
a DPLL-based backtracking algorithm that is specialized for spatial relations of
objects in a grid. This approach is efficient compared to other approaches using
SAT solvers or SMT solvers. However, it will not find appropriate solutions in
the real world, as spatial reasoning in a grid leads to information loss. Similar
to the work by Uribe et al. [49], the approach of Kurup and Cassimatis [34]
is also not grounded to the formal semantics of qualitative spatial calculi, but
instead, utilizes a diagrammatic representation. The principal motivation of their
approach is to overcome the limitations of (diagrammatic) spatial reasoning with
propositional satisfiability solvers. In doing so, they show the manner in which
the DPLL algorithm augmented with diagrammatic reasoning can be used to
make SAT more efficient when reasoning about spatial relations in a grid. Indeed,
none of the related works discussed so far consider quantification of relational
spatial information, with only the approach of Banerjee and Chandrasekaran
[5] being quantification capable. Quantification, in our case, has been identified,
implemented, and demonstrated to be a crucial computational requirement within
applications.

6 Conclusion and Outlook

We have put forward a case for the accessibility of specialized spatial repre-
sentation and reasoning mechanisms via the medium of high-level, logic-based
formalizations in KR. This entails basic scientific challenges, and is motivated
by need to solve specialized real-world problems in spatial representation and
reasoning, and applying QSR in such application scenarios.

The core contributions of this paper lie in the integration of qualitative spatial
representation and reasoning with constraint logic programming. Given the
support for polynomial systems within constraint logic programming, our method
is directly realizable within state-of-art CLP solvers with support for polynomials.
We have demonstrated a prototypical implementation of this approach, and also
illustrated its applicability toward practical spatial computing in the domain of
computer-aided architecture design.

From a theoretical perspective, the general motivating principle of our ongoing
research is that any form of high-level spatial reasoning (e.g., spatial projection,
explanation etc) will rely on some form of spatial constraint solving capability, in
addition to other forms of non-classical inference patterns such as non-monotonic



inference, spatial belief revision capabilities etc. Hence, integration, along the lines
of CLP(QS), with other declarative frameworks such as Answer-Set Programming,
Event Calculus is one line of work presenting interesting challenges. The general
motivating principle here is that any form of high-level spatial reasoning (e.g.,
spatial projection, explanation etc) will rely on some form of spatial constraints
solving capability, in addition to other forms of non-classical inference patterns
such as non-monotonic inference, spatial belief revision capabilities etc.
From an application perspective, we have so far considered a rather limited range
of problems solely within the context of architecture design. Given the generality
of CLP(QS), there exist several possibilities for studies with other application
domains; here, geographic information systems, and cognitive robotics are a prime
candidates in our ongoing projects. With this backdrop, we are also extending
CLP(QS) in order to include support for reasoning with a high-level, qualitative
model for 3D visibility [48].
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